178 research outputs found

    Electronic/electric technology benefits study

    Get PDF
    The benefits and payoffs of advanced electronic/electric technologies were investigated for three types of aircraft. The technologies, evaluated in each of the three airplanes, included advanced flight controls, advanced secondary power, advanced avionic complements, new cockpit displays, and advanced air traffic control techniques. For the advanced flight controls, the near term considered relaxed static stability (RSS) with mechanical backup. The far term considered an advanced fly by wire system for a longitudinally unstable airplane. In the case of the secondary power systems, trades were made in two steps: in the near term, engine bleed was eliminated; in the far term bleed air, air plus hydraulics were eliminated. Using three commercial aircraft, in the 150, 350, and 700 passenger range, the technology value and pay-offs were quantified, with emphasis on the fiscal benefits. Weight reductions deriving from fuel saving and other system improvements were identified and the weight savings were cycled for their impact on TOGW (takeoff gross weight) and upon the performance of the airframes/engines. Maintenance, reliability, and logistic support were the other criteria

    Bayesian genome assembly and assessment by Markov Chain Monte Carlo sampling

    Full text link
    Most genome assemblers construct point estimates, choosing a genome sequence from among many alternative hypotheses that are supported by the data. We present a Markov Chain Monte Carlo approach to sequence assembly that instead generates distributions of assembly hypotheses with posterior probabilities, providing an explicit statistical framework for evaluating alternative hypotheses and assessing assembly uncertainty. We implement this approach in a prototype assembler and illustrate its application to the bacteriophage PhiX174.Comment: 17 pages, 5 figure

    Large droplet impact on water layers

    Get PDF
    The impact of large droplets onto an otherwise undisturbed layer of water is considered. The work, which is motivated primarily with regard to aircraft icing, is to try and help understand the role of splashing on the formation of ice on a wing, in particular for large droplets where splash appears, to have a significant effect. Analytical and numerical approaches are used to investigate a single droplet impact onto a water layer. The flow for small times after impact is determined analytically, for both direct and oblique impacts. The impact is also examined numerically using the volume of fluid (VOF) method. At small times there are promising comparisons between the numerical results, the analytical solution and experimental work capturing the ejector sheet. At larger times there is qualitative agreement with experiments and related simulations. Various cases are considered, varying the droplet size to layer depth ratio, including surface roughness, droplet distortion and air effects. The amount of fluid splashed by such an impact is examined and is found to increase with droplet size and to be significantly influenced by surface roughness. The makeup of the splash is also considered, tracking the incoming fluid, and the splash is found to consist mostly of fluid originating in the layer

    Functional traits of trees on and off termite mounds:Understanding the origin of biotically-driven heterogeneity in savannas

    Get PDF
    Questions In African savannas, Macrotermes termites contribute to small-scale heterogeneity by constructing large mounds. Operating as islands of high nutrient and water availability and low fire frequency, these mounds support distinct, diverse communities of trees that have been shown to be highly attractive to browsers. However, the distinct traits of tree species on termite mounds have hardly been studied, even though this may help to understand processes determining (1) their characteristic community structure and (2) attractiveness for browsers. Here, we compare functional trait and browser preference values between tree species on and off termite mounds. Location Hluhluwe-iMfolozi Park, Kwazulu-Natal, South Africa. Methods We recorded tree community compositions for 16 large Macrotermes natalensis mounds and 16 control plots of 100 m2 each in a paired design. For each observed tree species we measured 22 traits, related to water and nutrient use, fire tolerance, light competition and anti-herbivore defence, and compared average trait values between mound and control communities. Furthermore, we investigated the feeding preferences of ungulate browsers for the most common tree species and how this was linked to their associated traits. Results Termite mounds supported tree communities that were distinct from the surrounding savanna vegetation. Mounds hosted more evergreen and less leguminous tree species than control communities, and the dominant species were less mechanically defended, less nutritious, had larger leaves and lower wood density than the species dominating control plots. Browsers preferred leguminous tree species with high leaf N and P content, which were relatively rare on termite mounds. Conclusions Overall, we conclude that termite mounds in this savanna form small refuges for tree species that seem less adapted to fire (more evergreens), have low nutrient availability (less nitrogen fixers) and suffer from water stress (larger leaf sizes) than typical savanna trees. Surprisingly, despite their reputation as browsing hotspots, the tree species dominating mounds are less nutritious and less preferred by browsers than tree species of the surrounding savanna, which may be explained by the relatively nutrient-rich nature of this savanna or intraspecific trait differences

    Heartbeat: Measuring Active User Base and Potential User Interest in FLOSS Projects

    Full text link

    Interface dynamics in Hele-Shaw flows with centrifugal forces. Preventing cusp singularities with rotation

    Get PDF
    A class of exact solutions of Hele-Shaw flows without surface tension in a rotating cell is reported. We show that the interplay between injection and rotation modifies drastically the scenario of formation of finite-time cusp singularities. For a subclass of solutions, we show that, for any given initial condition, there exists a critical rotation rate above which cusp formation is prevented. We also find an exact sufficient condition to avoid cusps simultaneously for all initial conditions. This condition admits a simple interpretation related to the linear stability problem.Comment: 4 pages, 2 figure

    Conformal mapping methods for interfacial dynamics

    Full text link
    The article provides a pedagogical review aimed at graduate students in materials science, physics, and applied mathematics, focusing on recent developments in the subject. Following a brief summary of concepts from complex analysis, the article begins with an overview of continuous conformal-map dynamics. This includes problems of interfacial motion driven by harmonic fields (such as viscous fingering and void electromigration), bi-harmonic fields (such as viscous sintering and elastic pore evolution), and non-harmonic, conformally invariant fields (such as growth by advection-diffusion and electro-deposition). The second part of the article is devoted to iterated conformal maps for analogous problems in stochastic interfacial dynamics (such as diffusion-limited aggregation, dielectric breakdown, brittle fracture, and advection-diffusion-limited aggregation). The third part notes that all of these models can be extended to curved surfaces by an auxilliary conformal mapping from the complex plane, such as stereographic projection to a sphere. The article concludes with an outlook for further research.Comment: 37 pages, 12 (mostly color) figure

    It's Harder to Splash on Soft Solids

    Get PDF
    Droplets splash when they impact dry, flat substrates above a critical velocity that depends on parameters such as droplet size, viscosity and air pressure. By imaging ethanol drops impacting silicone gels of different stiffnesses we show that substrate stiffness also affects the splashing threshold. Splashing is reduced or even eliminated: droplets on the softest substrates need over 70\% more kinetic energy to splash than they do on rigid substrates. We show that this is due to energy losses caused by deformations of soft substrates during the first few microseconds of impact. We find that solids with Young's moduli 100\lesssim 100kPa reduce splashing, in agreement with simple scaling arguments. Thus materials like soft gels and elastomers can be used as simple coatings for effective splash prevention. Soft substrates also serve as a useful system for testing splash-formation theories and sheet-ejection mechanisms, as they allow the characteristics of ejection sheets to be controlled independently of the bulk impact dynamics of droplets.Comment: 5 pages, 4 figure

    Effects of small surface tension in Hele-Shaw multifinger dynamics: an analytical and numerical study

    Get PDF
    We study the singular effects of vanishingly small surface tension on the dynamics of finger competition in the Saffman-Taylor problem, using the asymptotic techniques described in [S. Tanveer, Phil. Trans. R. Soc. Lond. A 343, 155 (1993)]and [M. Siegel, and S. Tanveer, Phys. Rev. Lett. 76, 419 (1996)] as well as direct numerical computation, following the numerical scheme of [T. Hou, J. Lowengrub, and M. Shelley,J. Comp. Phys. 114, 312 (1994)]. We demonstrate the dramatic effects of small surface tension on the late time evolution of two-finger configurations with respect to exact (non-singular) zero surface tension solutions. The effect is present even when the relevant zero surface tension solution has asymptotic behavior consistent with selection theory.Such singular effects therefore cannot be traced back to steady state selection theory, and imply a drastic global change in the structure of phase-space flow. They can be interpreted in the framework of a recently introduced dynamical solvability scenario according to which surface tension unfolds the structually unstable flow, restoring the hyperbolicity of multifinger fixed points.Comment: 16 pages, 15 figures, submitted to Phys. Rev

    Predictability of large future changes in a competitive evolving population

    Full text link
    The dynamical evolution of many economic, sociological, biological and physical systems tends to be dominated by a relatively small number of unexpected, large changes (`extreme events'). We study the large, internal changes produced in a generic multi-agent population competing for a limited resource, and find that the level of predictability actually increases prior to a large change. These large changes hence arise as a predictable consequence of information encoded in the system's global state.Comment: 10 pages, 3 figure
    corecore